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Abstract

We analyze the models L[T2n], where T2n is a tree on ω×κ1
2n+1 projecting to a universal

Π1
2n set of reals, for n > 1. Following Hjorth’s work on L[T2], we show that under Det(Π˜1

2n),
the models L[T2n] are unique, that is they do not depend of the choice of the tree T2n.
This requires a generalization of the Kechris-Martin theorem to all pointclasses Π1

2n+1.
We then characterize these models as constructible models relative to the direct limit of all
countable non-dropping iterates of M#

2n+1. We then show that the GCH holds in L[T2n],
for every n < ω, even though they are not extender models. This analysis localizes the
HOD analysis of Steel and Woodin at the even levels of the projective hierarchy.

1 Introduction

The purpose of this paper is to study the inner models L[T2n] associated with the pointclasses
Π˜1

2n. The study of the inner models L[T ] where T is a tree on ω × κ, κ a Suslin cardinal, T
projects to a universal Γ set of reals and Γ is a Levy pointclass, was initiated in the works of
the Cabal. The first step in this direction was taken by Moschovakis who has shown that if T1

is the Schoenfield tree on ω × ω1 projecting to a Π1
1 set of reals then

L[T1] = L.

In [13], Moschovakis defined the models HΓ as follows. Fix a pointclass Γ which resembles
Π1

1 and let ϕ : S → δ˜ be a regular Γ-norm on a set S ⊆ R, S ∈ Γ which is onto δ˜. Let G ⊆ ω×R
be a good universal set in ∃RΓ and define

Pϕ,G ⊆ ω × δ˜
1



by
Pϕ,G(n, γ)↔ ∃x(x ∈ S ∧ ϕ(x) = γ ∧G(n, x)).

Assuming AD, let HΓ = L[Pϕ,G]. The construction of HΓ takes place inside L(R). By
Moschovakis HΓ is the smallest inner model of ZF containing every ∃RΓ subset of δ˜. This
led descriptive set theorists to view HΓ as analogs of HOD at the level of Γ-definability, for Γ
suitably chosen. For example, if Γ = Σ2

1, then

HΓ ∩ Vδ˜2
1

= HOD ∩ Vδ˜2
1
.

Letting Γ be a pointclass resembling Π1
1 and letting ~ϕ be a Γ-scale on a universal Γ set of

reals U , Becker and Kechris have shown that the models L[T2n+1(~ϕ, U)] are independent of the
choice of scale ~ϕ and universal set U . As a corollary this gives that

L[TΓ] = HΓ,

for Γ as above. Harrington and Kechris have shown that

R ∩ L[T2n+1] = C2n+2,

where
C2n+2 = {x : x is ∆1

2n+2 in a countable ordinal}

is the largest countable Σ1
2n+2 set of reals.

The original intuition of Becker, Kechris and Moschovakis that HΓ was an analog of HOD
was confirmed by Steel and Woodin’s HOD analysis, presented in [18], culminating in Steel’s
beautiful result that the HΓ models are extender models, for Γ a pointclass resembling Π1

1, see
[18]. First using finer versions of iterability for M2n

1, Steel has shown that R ∩M2n = C2n+2,
see [14]. In addition, for Γ = Π1

2n+1, HΓ is the direct limit of all countable non-dropping iterates
of M2n, denoted by M2n,∞, cutoff at the least < δ∞-strong, which turns out in this case to
be δ˜1

2n+1 and where δ∞ is the least Woodin cardinal of M2n,∞, localizing Woodin’s result that
δ˜2

1 is the least < Θ-strong. This is essentially shown in [18]. The reader can also consult [12]
for a proof that δ˜2

1 is the least < Θ-strong. This also means by soundness, a strong form of

acceptability, that HΓ satisfies the GCH, a local version of Steel’s result that HODL(R) satisfies
the GCH.

In [3], Hjorth has shown that under Det(Π˜1
2), L[T2] was independent of the choice of scale

on a universal Π1
2 set of reals. For n > 1 the uniqueness of L[T2n] remained open. We show

that it has a positive solution:

Theorem 1 The models L[T2n] are independent of the choice of the Π1
2n universal set A and

of the choice of the scale ~ϕ on A.

1The minimal proper class mouse with 2n Woodin cardinals.
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In showing the uniqueness of L[T2], Hjorth used the Kechris-Martin theorem in an essential
fashion. Jackson has shown the Kechris-Martin theorem using the theory of descriptions. The
reader may consult [9] for the original proof of the Kechris-Martin theorem. The proof of the
above theorem requires a generalization of this closure phenomenon to all pointclasses Π1

2n+1,
which we show to be true using the theory of descriptions as in the Π1

3 case presented in [4]:

Theorem 2 ([1]) For every n ∈ ω, the pointclass Π1
2n+3 is closed under existential quantifi-

cation up to κ1
2n+3, where κ1

2n+3 is the (2n + 3)rd Suslin cardinal of cofinality ω. In particular
every Π1

2n+3 subset of κ1
2n+3 contains a ∆1

2n+3 member.

After showing the uniqueness of L[T2n] for every n < ω, we will then show the following
counterpart to Steel’s result on L[T2n+1] being an extender model:

Theorem 3 Assume ADL(R). Let M#
2n+1,∞ be the active direct limit of all countable non-

dropping iterates of M#
2n+1. Then the L[T2n+2] are the models L[M#

2n+1,∞] for every n ∈ ω. In
addition L[T2n] satisfies the GCH for every n < ω.

Acknowledgements. This paper is based on the fourth chapter of the author’s thesis and
we would like to thank Steve Jackson for discussions, comments and corrections he offered to
the arguments. We also would like to thank Farmer Schlutzenberg for reading drafts of this
paper and for his corrections and comments. It will be apparent to the reader that part of this
work is heavily indebted to previous work of Hjorth, see [3]. Finally we would like to thank
Grigor Sargsyan and Hugh Woodin without who, this paper would not have been possible. We
are thankful to them for their numerous ideas on the structure of the models L[T2n] and for
their comments.

2 Analysis of the model L[T2n]

2.1 Introduction

As mentionned above, the models L[T2n] were not known to be independent from the universal
sets and the scales the tree T2n may depend on. We show now that this problem has a positive
solution. Previous work of Hjorth in [3] established that L[T2] is unique.

In [2], Becker and Kechris have shown that the model L[T2n+1(P, ~ϕ)] is independent of the
choice of P and ~ϕ on P . What Becker and Kechris actually show is a bit more: given the same
assumptions as above, every Σ1

2n+2 (in the codes provided by the 0th norm of the scale) subset
of δ˜1

2n+1 is in the model L[T2n+1]. We state the theorem below.

Theorem 4 (Becker, Kechris, [2]) Let Γ be an ω-parametrized pointclass such that ∆0
2 ⊆ Γ,

closed under recursive substitutions and under ∧. Let A be a Γ-complete set of reals, let ~ϕ =
〈ϕn : n ∈ ω〉 be a regular ∃RΓ scale on A and consider the 0th norm ϕ0 : A� κ. Then for any
X ⊆ κ which is ∃RΓ in the codes given by ϕ0 then X ∈ L[T (A, ~ϕ)]
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Since every tree T2n+1 coming from a universal Π1
2n+1 set P and a regular Π1

2n+1 scale ~ϕ
on P can be computed to be Σ1

2n+2 in the codes by the Coding lemma for every n < ω, this
establishes that L[T2n+1] is unique. Steel has shown that the L[T2n+1] = H2n+1 are extender
models. Recall that H2n+1 is the model L[P~ρ,δ] where P~ρ,δ is a subset of ω × δ˜1

2n+1 defined by

P~ρ,δ(n, α)↔ ∃x(x ∈ P2n+1 ∧ ρ(x) = α ∧G(n, x)),

where G is a good universal set for ∃RΠ1
2n+1 = Σ1

2n+2, ~ρ a Π˜1
2n+1 scale on P . In particular

they’re constructible models over a specific direct limit of a directed system of mice, see [17]
and [18] for a full proof of this fact.

Our goal is to generalize Hjorth’s proof that L[T2] is unique. The main difference is that
we are not using the theory of sharps as in Hjorth’s proof but Jackson’s theory of descriptions.
We first briefly recall the set up from Becker and Kechris and some previous partial results on
the problem of the independence of L[T2n].

Definition 2.1 Let κ1
2n+1 be the Suslin cardinal of cofinality ω associated to Π1

2n under AD,
i.e. (κ1

2n+1)+ = δ˜1
2n+1.

Let P be a complete Π1
2n set of reals and let ~ϕ a regular ∆1

2n+1 scale on P . Let ϕn : P � κn
and let κ = supn κn. Then ~ϕ is nice if κ = κ1

2n+1 and the norms ϕn satisfy the following bounded
ordinal quantification condition:

If A(x, y) is Σ1
2n+1 then the following is also Σ1

2n+1

R(n, z, x)↔ z ∈ U ∧ ∀w ∈ U(ϕn(w) ≤ ϕn(z)→ A(x, y))

Notice that for n = 1 this is essentially the Kechris-Martin theorem. With the following theorem
of Becker and Kechris, the L[T2n] models are independent of the choice of any Π1

2n complete set
A ⊆ R and any nice scale ~ϕ:

Theorem 5 (Becker and Kechris, [2]) Assume AD. Let A be a complete Π1
2n set of reals

and let ~ϕ be a nice ∆1
2n+1 scale on A. Then the model L[TA,~ϕ] is independent of the choice of

A and ~ϕ.

So basically a uniqueness of the L[T2n] models will require analyzing any scale by a nice
scale. Let P be a complete Π1

2n complete set of reals and let ~ϕ be a regular ∆1
2n+1 scale on P .

Let κn be such that ϕn : P � κn. Let then κ = sup{κn : n ∈ ω}. Then we have that κ1
2n+1 ≤ κ.

Using the scale ~ϕ, one can define the following coding of ordinals less than κ: let

P ∗ = {(n, x) : n ∈ ω ∧ x ∈ P},

where (n, x) denotes the new real (n, x(0), x(1), x(2), ...). For (n, x) ∈ P ∗, define ϕ∗((n, x)) =
ϕn(x). We will abuse the notation and drop the parenthesis around the real (n, x) when we
plug in inside the norm ϕ∗. For κ some ordinal, we say that X ⊆ κ is Γ in the codes provided
by (P ∗, ϕ∗) if the set

{(n, x) ∈ P ∗ : ϕ∗(n, x) ∈ X}
is in the pointclass Γ.

The above theorem relies on the following result of Becker and Kechris:
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Theorem 6 (Becker, Kechris, [2]) Assume AD. Let X ⊆ κ1
2n+1 and X is Σ1

2n+1 in the codes
provided by (P ∗, ϕ∗). Then X ∈ L[T (P, ~ϕ)], where P is a complete Π1

2n set of reals and ~ϕ is a
∆1

2n+1 regular scale on P .

To see this, let P be a complete Π1
2n set of reals and let ~ϕ be a regular ∆1

2n+1 scale on P .
Consider P ∗ as above and let ψ be the scale defined by ψ0(n, x) = ϕn(x) and ψk+1(n, x) =

ϕk(x). It then follows that we have that X ∈ L[T (P ∗, ~ψ)]. We then need to see that the tree

T (P ∗, ~ψ) ∈ L[T (P, ~ϕ)]. But we can compute membership in T (P ∗, ~ψ) as follows:

(a0, ..., an), (α0, ..., αn) ∈ T (P ∗, ~ψ)↔ ∃(b0, ..., bk), (β0, ..., βk) ∈ T (P, ~ϕ)(a0 ≤ l ∧ n+ 1 ≤
l ∧ a1 = b0 ∧ ... ∧ an = bn−1 ∧ α0 = βa0 ∧ ∀j(k ≤ j ≤ n→ αj = βj−1)).

Throughout the proof, we will then use the 0th norm ψ0 associated to any scale ~ϕ as defined
above and we will denote it by ψ0,~ϕ. The goal is to show that the models L[T2n] are independent
of the choice of an arbitrary scale not just a nice scale. We will follow Hjorth’s proof, see [3] to
show that an arbitrary scale can be analyzed in the model L[T2n] by a nice scale.

2.2 Descriptive set theory background

We recall what it means to be a regular scale:

Definition 2.2 Let Γ˜ ⊆ P(R) be a pointclass and let A ∈ Γ˜. Then a regular Γ˜-scale is a
sequence ~ϕ = 〈ϕn : n ∈ ω〉 of onto maps ϕn : A � κn, for κn ∈ ORD, satisfying the following
properties:

1. Whenever {xi} ⊆ A is a sequence of reals such that xi → x and ϕn(xi)→ γn for every n
as i→ ω, then x ∈ A and we have the lower semi continuity property: ϕn(x) ≤ γn.

2. The following norm relations, ≤∗ϕn and <∗ϕn are in Γ˜, for every n:

x ≤∗ϕn y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ ϕn(x) ≤ ϕn(y)))

x <∗ϕn y ↔ x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ ϕn(x) < ϕn(y)))

Also recall that starting from a regular scale ~ϕ, we have the tree T derived from the scale
which is defined as follows

(s, ~α) ∈ T~ϕ ←→ ∃x(x � lh(s), ϕ0(x) = α0, ..., ϕlh(s)−1(x) = αlh(s)−1)

It is then straightforward to show that A = p[T~ϕ] where A ⊆ R is the set on which the scale ~ϕ
is. For example, if x ∈ p[T~ϕ] then use the properties of the scale to obtain x ∈ A. Notice that
the tree T is on ω × κ where κ = sup{κn : n ∈ ω} and thus κ has to be a Suslin cardinal of
cofinality ω.
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We next introduce the basic ingredients of Jackson’s theory of descriptions and analysis
of measures in L(R). It is not necessary for the reader to know deep facts of the theory of
descriptions to follow the proof.

Recall that under determinacy successor cardinals need not be regular. As usual,

δ˜1
n =def sup{| � | :� is a ∆˜ 1

n prewellordering of R}

Recall that by the coding lemma the δ˜1
n are regular successor cardinals. By Kunen, Martin and

Solovay, the δ˜1
n are all measurable cardinals (see theorem 5.2 of [8] for a proof) and by Jackson

δ˜1
2n+1 satisfy the strong partition property (see [4] for the underlying theory needed to prove

this). We define the Suslin cardinals of cofinality ω:

κ1
2n+1 =def the least γ s.t for every A ∈ Σ˜1

2n+1 there exists T ⊆ ω × γ s.t A = p[T ]

We have the following values for the projective ordinals and the Suslin cardinals of cofinality
ω:

1. κ1
1 = ℵ0, δ˜1

1 = ℵ1 and thus δ˜1
2 = ℵ2,

2. κ1
3 = ℵω, δ˜1

3 = ℵω+1 and thus δ˜1
4 = ℵω+2 (Martin and Solovay).

3. In general (Jackson), we have κ1
2n+1 = ℵ

ωω
...ω︸ ︷︷ ︸

2n+1 tower

, δ˜1
2n+1 = ℵ

ωω
...ω︸ ︷︷ ︸

2n+1 tower

+1
and thus

δ˜1
2n+2 = ℵ

ωω
...ω︸ ︷︷ ︸

2n+1 tower

+2

To carry out the construction of the trees T2n, we need to introduce natural families of
measures which arise in the context of weak and strong partition properties. We refer the
reader to [4] for the notions of uniform cofinality, trees of uniform cofinality R, the measures
W n

1 and Sn1 .
We now move towards defining WOκ15

the set of codes of ordinals up to κ1
5 = ℵωωω . Once

this is done the definition of the set of codes up to ℵε0 will be very similar.

Theorem 7 (Jackson, [4]) There is a Π˜1
3 complete set P , a Π1

3-norm ϕ such that ϕ(x) =
|x| < δ˜1

3 from P onto δ˜1
3 and a homogeneous tree J3 on ω × δ˜1

3 for P satisfying the following.
There is a c.u.b set C ⊆ δ˜1

3 such that for all α ∈ C, there is a x ∈ P with ϕ(x) = α and with
J3x � (supν jν(α)) illfounded, where the supremum ranges over measures appearing in MRs, the
tree of uniform cofinalities, coding measures which appear on a homogeneous tree projecting to
WO2.

Next consider functions f : δ˜1
3 → δ˜1

3 and the Martin tree T on ω × δ˜1
3. The Martin tree is

the appropriate generalization of the Kunen tree. We refer the reader to [4] for the definition
of the Kunen tree.
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Theorem 8 (Martin, [4]) There is a tree T on ω × δ˜1
3 such that for all f : δ˜1

3 → δ˜1
3, there is

an x ∈ R with Tx is wellfounded and a c.u.b set C ⊆ δ˜1
3 such that for all α ∈ C, f(α) < |Tx �

supν jν(α)|, where if cof(α) = ω then we use |Tx � α| and if cof(α) = ω1, the supremum ranges
over the n-fold products, W n

1 , of the normal measure on ω1 (these occur in the homogeneous
tree construction projecting to a Π˜1

1 set) and if cof(α) = ω2, the supremum ranges over the
measures occurring in the homogeneous tree construction projecting to a Π˜1

2 set.

Notice that the Martin tree T is ∆1
3 in the codes. That is we can find two relations S and

T which are Σ1
3 and Π1

3 respectively such that

S(n, a, x)↔ T (n, a, x)↔ ((a0, ..., an−1), (|x0|, ..., |xn−1|)) ∈ T

We are now in a position to define the codes of ordinals less than κ1
5:

Definition 2.3 (The set of codes of ordinals less than κ1
5) Let then T on ω × δ˜1

3 be the
Martin tree and define

WOκ15
= {〈z, x1, ..., xn〉 : z ∈WOω ∧ Txi is wellfounded ∀i}

For y = 〈z, x1, ..., xn〉 ∈ WOκ15
, let |y| = [fy]Wn

3
where fy : (δ˜1

3)n → δ˜1
3 is defined by:

fy(β1, ..., βn) = |(Txn � sup
ν
jν(βn)(δn−1)|, where ,

δn−1 = |(Txn−1 � sup
ν
jν(βn−1)(δn−2)|, ...

δ1 = |(Tx1 � sup
ν
jν(β1)(δ0)|, and δ0 = |z|WOω

In the above we use the appropriate measure ν according to which cofinality the ordinal βj
has, for 1 ≤ j ≤ n, in view of Martin’s theorem. So for every α < κ1

5,∃y ∈ WOκ15
such that

α = [fy]Wn
3

for some n ∈ ω. Notice that WOκ15
is Π˜1

4. Also notice that we could have defined
WOℵ

ωω
n for each n ∈ ω and then taken the unions of all these sets of codes to obtain WOκ15

.
In general we define WOκ12n+3

in a similar manner. Let W n
2n+1 the cof(γ)-cofinal measure

on δ˜1
2n+1, where γ is the largest regular cardinal strictly less than δ˜1

2n+1. The Martin tree T
in this case will be a tree on ω × δ˜1

2n+1 and we’ll consider functions f : δ˜1
2n+1 → δ˜1

2n+1, except
this time there will be a lot more normal measures, all corresponding to the regular cardinals
below δ˜1

2n+1.For each cofinality the appropriate measure has to be plugged in the Martin tree
construction to analyze functions f : δ˜1

2n+1 → δ˜1
2n+1.

Definition 2.4 (The set of codes of ordinals less than κ1
2n+3)

WOκ12n+3
= {〈z, x1, ..., xm〉 : z ∈WOκ12n+1

∧ Txi is wellfounded ∀i}

For y = 〈z, x1, ..., xm〉 ∈ WOκ12n+3
, let |y| = [fy]Wm

2n+1
, for some m ∈ ω, where, letting T on

ω × δ˜1
2n+1 be the Martin tree, fy : (δ˜1

2n+1)m → δ˜1
2n+1 is defined by:

fy(β1, ..., βm) = |(Txm � sup
ν
jν(βm)(δm−1)|, where ,
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δm−1 = |(Txm−1 � sup
ν
jν(βm−1)(δm−2)|, ...

δ1 = |(Tx1 � sup
ν
jν(β1)(δ0)|, and δ0 = |z|WO

κ12n+1

Again every ordinal below κ1
2n+3 is coded by a real and WOκ12n+3

is a Π˜1
2n+2 set of real codes.

Below we state the generalized version of the Kechris-Martin theorem that we need here.

Theorem 9 Assume AD + V = L(R). Let X be a Π1
2n+1(x) subset of R × ω. Suppose that

∃γ < κ1
2n+1 such that for all x ∈ R, for all m ∈ ω, whenever [fx]Wm

2n+1
= γ then (x,m) ∈ X, for

f : (δ˜1
2n−1)m → δ˜1

2n−1. Then there exists a x0 ∈ ∆1
2n+1(y) and an n0 ∈ ω such that for all x ∈ R

and all m ∈ ω, whenever [fx]Wm
2n+1

= [fx0 ]Wn0
2n+1

then (x,m) ∈ X.

Theorem 10 Assume AD. Let X be a Σ1
2n+1 subset of R× R× ω. Then the set

{x ∈ R : ∀γ < κ1
2n+1∃y ∈ R∃k ∈ ω([fy]Wk

2n+1
= γ ∧ (x, y, k) ∈ X}

is also Σ1
2n+1.

2.3 Analyzing the trees T2n

Definition 2.5 Let Γ be a pointclass such that Σ0
1 ⊆ Γ. Let z ∈ R. We define the relativization

Γ(z) of Γ by: P ⊆ R is in Γ(z) if there exists a set Q ⊆ R2 in Γ such that,

P (x)←→ Q(z, x).

In particular Σ0
1(z) is the pointclass of semirecursive in z sets.

Definition 2.6 Let ϕ be a norm on R. We say P is invariant in x if for all x, x′ ∈ R and for
all y ∈ R,

ϕ(x) = ϕ(x′) −→ [P (x, y)↔ P (x′, y)]

Definition 2.7 Let ~ϕ be a regular scale on a set A ⊆ R such that ϕn : A → κn. We say that
a set X ⊆ R is relatively Π1

2n+3 invariant in the codes given by the 0th norm ψ0 if there exists
a set Y ⊆ R2 in Π1

2n+3 such that

x ∈ X ←→ ∀x1, ..., xn ∈ A∀k∀i ≤ n(ψ0(k, xi) = αk,i ∧ (〈x1, ..., xn〉, x) ∈ Y )

Similarly a set X ⊆ R is relatively Σ1
2n+3 invariant in the codes given by the 0th norm ψ0 if

there exists a set Y ⊆ R2 in Σ1
2n+3 such that

x ∈ X ←→ ∀x1, ..., xn ∈ A∀k∀i ≤ n(ψ0(k, xi) = αk,i ∧ (〈x1, ..., xn〉, x) ∈ Y )

One can of course also let X ⊆ Rn and Y ⊆ Rn+1 in the above definitions.
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We have the following result of Solovay, see [6],

Theorem 11 (Solovay) Assume AD. Let ~ϕ be a regular ∆1
2n+3 scale on a a Π1

2n+2 set A ⊆ R.
Fix x1, ..., xn ∈ A. Let Λ be the pointclass of sets of reals which are relatively Π1

2n+3 invariant
in the codes given by ψ0. Then, PWO(Λ).

Recall that a pointclass Γ is ω-parametrized if there exists a U ⊆ ω × R which is universal
for Γ subsets of R.

The following is a consequence of definition 2.7 and the fact that the pointclasses Π1
2n+1 are

all ω-parametrized for every n < ω.

Lemma 2.8 Assume AD. Let ~ϕ be a regular ∆1
2n+3 scale on a a Π1

2n+2 set A ⊆ R. Fix
x1, ..., xn ∈ A. Let Λ be the pointclass of sets of reals which are relatively Π1

2n+3 invariant in
the codes given by ψ0. Then Λ is ω-parametrized.

Also we will repeatedly use in the proof the fact due to Kechris that, under Det(Γ), every
prewellordering in ∃RΓ does not have a perfect set of inequivalent element. (since there is no
∃RΓ wellordering of R under Det(Γ) and since by a result of Kechris, every set in aΓ has the
property of Baire, see [7]). This only requires local determinacy hypothesis, although we just
work under AD.

We will also use the following nice determinacy transfer result due to Kechris and Solovay,
see [11]:

Theorem 12 (Kechris, Solovay) Assume ZF+DC. Let Γ be a pointclass such that ∆0
2 ⊆ Γ

and Γ is a Spector pointclass. Then we have that

Det(∆) −→ Det(Γ)

Proof. See [11] �

Corollary 13 Assume ZF+DC. Let Γ be a pointclass such that ∆0
2 ⊆ Γ and Γ is a Spector

pointclass. Then we have that
Det(HYP) −→ Det(IND)

Corollary 14 Suppose V � Det(Π1
2n). Let M be an inner model of ZF such that ORD ⊆ M

and such that M≺Σ1
2n+1

V . Then,

M � Det(Π1
2n)

Notice that assuming Det(∆˜ 1
2n),M is an inner model of ZF such that ORD ⊆M and such

that T2n+1 ∈ M, where T2n+1 is a tree on ω × δ˜1
2n+1 which projects to a universal set U and

which comes from a regular Π1
2n+1 scale ~ϕ on U , we have that

M≺Σ1
2n+1

V.

We will need the following theorem of Woodin. The proof follows Hjorth’s argument, see [3].
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Lemma 2.9 (Woodin) Suppose V � Det(Π1
2n). Let x be a Cohen generic real over V . Then,

V ≺Σ1
2n+2

V [x]

Proof. Let T2n+2 be the tree coming from the Kechris-Martin scale on ω × ω × κ1
2n+3 such

that for some Σ1
2n+3 set A, pp[T ] = A and for some Π1

2n+2 set B, p[T ] = B and

A = {x : ∃x ∈ R((x, y) ∈ B)}.

Let τ be a term in the forcing language for Cohen forcing. Let κ1
2n+3 < κ be least such that

Lκ[T2n+2, τ ] is admissible (i.e. satisfies KP 2).
If x is Cohen generic over V , then L[T2n+2, τ, x] is still admissible. But then by ab-

soluteness of wellfoundedness V [x] � p[T2n+2] ⊆ B. Since Lκ[T2n+2, τ, x] is admissible, if
V [x] � ∀y((y, τG(x)) /∈ B) then for all z ∈ B such that (z, τG(x)) ∈ p[T2n+2], the fact that
(T2n+2)z is wellfounded will be witnessed in Lκ[T2n+2, τ, x].

But since there are only countably many reals in the model Lκ[T2n+2, τ, x], since

Lκ[T2n+2, τ, x] ∩ R = Q2n+3(x, z),

which is countable by Q-theory3, with τ coded by a real z, we can let x′ such that x′ ∈ V and
such that x′ is Cohen generic over Lκ[T2n+2, τ ]. Pick x′ below a condition p which is such that

p 
 the tree of attempts to build y with (y, τ [x]) ∈ p[T2n+2] is wellfounded

Then we have that

Lκ[T2n+2, τ ] � p 
 the tree of attempts to build y with (y, τ [x]) ∈ p[T2n+2] is wellfounded

and so

V � the tree of attempts to build y with (y, τ [x]) ∈ p[T2n+2] is wellfounded

�

Notice that since Det(Π1
2n) is a Σ1

2n+2 statement, the above theorem can be applied to
iterations of Cohen forcing, although we won’t need this fact in the proof below.

Next, as in Hjorth’s proof, the idea is to use forcing to analyze a given Π1
2n+3 norm. What

the theorem below means in practice is that any tree T2n which comes from a Kechris-Martin-
like scale4 can be used to analyze a given Π1

2n+3 norm on the reals. Call such a tree a canonical
T2n tree 5.

2KP is Kripke-Platek set theory. It is weaker than ZFC, has no power set axiom with separation and
collection are limited to Σ0(= ∆0 = Π0) formulae.

3The fact that the set of reals of Lκ[T2n] is Q2n+3 can be shown using the generalizations of the Kechris-
Martin theorem, this was shown in the author’s thesis, see [1], section 3.4 and section 3.5.

4Such scales were constructed in the author’s PhD thesis, jointly with Steve Jackson, this construction is not
directly relevant to the proof.

5The canonical tree T2 is simply the Martin-Solovay tree built using the theory of sharps.
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The main twist is that once this is done, we would like to do the same for any tree T2n, that
is not necessarily coming from a Kechris-Martin-like scale. The corollary to the theorem below
will allow making any T2n ⊆ ω × κ1

2n+1 tree look like a canonical T2n tree. Once this is done,
one can then capture any T2n-like tree in L[T2n]. This is the idea Hjorth used in his proof of
the uniqueness of the L[T2] models.

Theorem 15 Assume AD. Let y ∈ R and let ρ be a Π1
2n+3(y) norm on some set of reals. Let

A be a complete Π1
2n+2(y) set of reals and let ~ϕ be a regular ∆1

2n+3(y) scale. Suppose that for
all B ∈ Σ1

2n+3(y), the following set

{x ∈ R : ∀x1, ..., xn ∈ A, ∃y1, ..., yn∀k∀i ≤ n(ψ0(k, yi) = ψ0(k, xi), (〈y1, ..., yn〉, x) ∈ B)}

is also Σ1
2n+3(y).

Then for every x ∈ R, there exists a sequence {xk} ⊆ A such that for ψ0(k, xi) = αi, for
every i ≤ n and there exists a set D ⊆ R which is relatively ∆1

2n+3(y) invariant in the codes
given by the 0th norm ψ0 satisfying the following properties:

1. x ∈ D,

2. D ⊆ {z ∈ R : ρ(z) = ρ(x)}.

Proof. We let y = 0 since the case with a real parameter y is exactly the same. We will
establish the theorem with a series of claims.

First we show the following claim which follows from the separation property of the point-
class of sets which are relatively Σ1

2n+3 invariant in the codes given by the 0th-norm ψ0.

Claim 1 Suppose B is relatively Σ1
2n+3 invariant in the codes given by the 0th-norm ψ0. Suppose

that
∀w, z ∈ B we have that ρ(w) = ρ(z)

Then there exists a set B∗, such that B ⊆ B∗, B∗ is relatively ∆1
2n+3 invariant in the codes

given by the 0th-norm ψ0 and

∀w, z ∈ B∗ we have that ρ(w) = ρ(z)

Proof.
Consider the set

C = {w ∈ R : ∃z ∈ B(ρ(w) 6= ρ(z))}
Then the set C is relatively Σ1

2n+3 invariant in the codes given by ψ0 since B is also in that
pointclass. Also C∩B = ∅. Recall that, under ZF for a nonselfdual pointclass the prewellorder-
ing property of a pointclass implies the separation property of the dual pointclass. So choose a
set B∗ which is relatively ∆1

2n+3 invariant in the codes given by ψ0 such that B ⊆ B∗ and such
that C ∩B∗ = ∅.

�

We define the set A0 as follows:
A0 is the set of all ∈ R such that ∀x1, ..., xn ∈ A, ∀αk,i, if ψ0(k, xi) = αk,i, where i ≤ n, then

for every D which are relatively ∆1
2n+3 in ψ0 the codes given by we have either

11



1. x /∈ D, or

2. ∃w, z ∈ D(ρ(w) 6= ρ(z))

Assume that A0 is nonempty. Then notice that A0 ∈ Σ1
2n+3, since ~ϕ, and hence ~ψ is a ∆1

2n+3

scale on A, and since we can obtain, uniformly in the codes give by the 0th norm ψ0 a code for
the set D, say from a universal relatively Π1

n+3 invariant in the codes given by ψ0 set and since
this pointclass also has the prewellordering property uniformly in the codes given by ψ0.

Claim 2 If A1 ⊆ A0 and A1 6= ∅ is relatively Σ1
2n+3 in the codes given by ψ0, then ∃w, z ∈ A1

such that ρ(w) 6= ρ(z).

Proof.
Suppose that ∀w, z ∈ A1, we have that ρ(w) = ρ(z), then let A1 ⊆ A2 such that A2 is

relatively ∆1
2n+3 in the codes given by ψ0 and ∀w, z ∈ A2, we have ρ(w) = ρ(z). But now notice

that A2 ∩ A0 = ∅, by definition of A0 and then we must have A1 = ∅. Contradiction!
�

Now we define the following partial order P:

P = {B ⊆ R : B 6= ∅, B ⊆ A0,∃{xi}i≤n ⊆ Aψ0(k, xi) = αk,i and B is rel. Σ1
2n+3 inv. in ψ0}

For B0, B1 ∈ P, we let
B0 ≤P B1 ←→ B0 ⊆ B1.

Notice that by assumption P 6= ∅.
Let Vλ a large enough rank initial segment of V such that Vλ � ZFC−. Let X ≺ Vλ be

a countable elementary substructure of Vλ and let M be the transitive collapse of X. Let
Q = P ∩M and let ≤Q=≤P ∩Q×Q.

If G is Q-generic over V , we let xG be the real introduced by forcing with Q. We also let Ġ
be a name for the Q generic G.

Claim 3 (A0, A0) 
 ρ(xĠ0
) 6= ρ(xĠ1

).

Proof.
Suppose that there are conditions B0 ⊆ A0 and B1 ⊆ A0 such that

(B0, B1) 
 ρ(xĠ0
) = ρ(xĠ1

)

Let
B∗0 = B0 ×B0 ∩ {(w, z) : ρ(w) 6= ρ(z)}

Then since Q is countable, we have by elementarity of M that B∗0 ∈ M . Also B∗0 6= ∅ by the
above claim. Let

Q′ = {B ⊆ R2 : B ∈M,B 6= ∅, B is rel. Σ1
2n+3 inv. in the codes αk,i given by ψ0(k, xi)}
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Let (K,G) be Q′ ×Q generic over V such that K ⊆ B∗0 ∧G ⊆ B1. Let

G0 = {B0 ⊆ R : {(w, z) ∈ B∗0 : z ∈ B0} ∈ H}

and let
G1 = {B1 ⊆ R : {(w, z) ∈ B∗1 : z ∈ B0} ∈ H}

Notice that (G0, G) and (G1, G) are both P × P generic over V 6. Also since B0 ∈ G0,
B0 ∈ G1 and B1 ∈ G we have that

ρ(xG0) = ρ(xG) and ρ(xG1) = ρ(xG)

Since A is a complete Π1
2n set, any Π1

2n set X ⊆ R2 which projects to (≤∗ρ)c is such that
X ≤W A. Let ε be a real coding the function Wadge reducing X to A. Then this fact continues
to hold in V [H,G] with ε ∈ V [H,G]. In addition, by absoluteness of wellfoundedness we have
that V [H,G] � p[T2n+2] ⊆ A. Let ε̄ = π−1(ε), so that ε̄ codes the Wadge reduction inside M .
Since π naturally lifts to generic extensions. By genericity of G0, G1, we then have reals xG0

and xG1 such that
ρ(xG0) 6= ρ(xG1).

But then ρ(xG0) = ψ(xG) and ρ(xG1) = ρ(xG) yet ρ(xG0) 6= ρ(xG1) in V [H,G]. Since Q× P is
countable then V [H,G] is equivalent to V [x] for x a Cohen real. Contradiction!

�

To finish the proof of the theorem, we use the following basic lemma from forcing theory:

Lemma 2.10 Let z be a Cohen real. Then there is a perfect set F in V [x] such that for every
F ′ ⊆ F , F ′ = {z0, ..., zj} finite, we have zj is generic over V [z0, ..., zj−1].

Proof.
Consider the following poset:

P = {(T, k) : T ⊆ 2<ω, ht(T ) = k}

We also let
(T, k) ≤ (S, l)←→ S ⊆ T ∧ l ≤ k.

Any P-generic/V adds a perfect tree U . Let G be P-generic over V . Let z0, ..., zj ∈ U be in V [G].
Let (T, k) ∈ V such that for branches f0, ..., fj ∈ [T ] we have f0 ⊆ z0, ..., fj ⊆ zj. Notice that
there are densely many conditions (S, l) ≤ (T, k) for which there exists a conditions (R,m) such
that for branches f 0

0 , ..., f
0
j ∈ [R] we have f0 ⊆ f 0

0 , ..., f
0
j ⊆ fj and Nf00

×...×Nf0j
∩X = ∅ for some

nowhere dense set X. But since G is generic, it has one such condition. So (z0, ..., zj) /∈ X,and
it is a sequence of Cohen reals, so zj is generic over V [z0, ..., zj−1].

�

So let z be a Cohen real and let F be a perfect set, in V [z], of R-many Cohen reals xf ,
f ∈ 2ω such that if f 6= g there exists Gf and Gg satisfying the following:

6One can use a genericity argument to show this.
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1. (Gf , Gg) are mutually V -generic below (A0, A0) for P× P

2. xGf = f, xGg = g and ρ(xf ) 6= ρ(xg).

But F is in V , since the second clause above is Σ1
2n+2 and since V ≺Σ1

2n+2
V [z]. But ρ was

supposed to be a Π1
2n+3 norm. Contradiction!

�

Corollary 16 Assume AD. Let ρ be a Π1
2n+3(y) norm on some set of reals. Then ∀x ∈

R,∃{αk} ⊆ (κ1
2n+3)<ω,∃D which is relatively ∆1

2n+3 in the codes given by some scale ~% such that

1. x ∈ D

2. D ⊆ {z ∈ R : ρ(z) = ρ(x)}.

Proof.
Since we don’t have the assumption on the norms of the scale ~% as in the above theorem, we

use the Kechris-Martin theorem. Then the set A0 defined in the above claims is Σ1
2n+3 by the

Kechris-Martin theorem. If fx : (δ˜1
2n+1)k → δ˜1

2n+1 and fy : (δ˜1
2n+1)j → δ˜1

2n+1 are two functions
coded by the ”nesting” defined for generalized Martin tree, and if [fx]Wk

2n+1
= [fy]W j

2n+1
and if

ψ0,%k(x) = α0,k, ψ0,%j(x) = β0,j then the pointclass of relatively ∆1
2n+3 invariant in the codes

given by ψ0,%k for some {xi}i≤k and the pointclass of relatively ∆1
2n+3 invariant in the codes

given by ψ0,%j for some {xi}i≤j are the same. So one can always find new codes in ψ0 for some
sequence of real such that the corollary holds.

�

Corollary 17 Assume AD. Let ρ be a Π1
2n+3(y) norm on some set of reals. Then ∀x ∈ R,∃j ∈

ω,∃α < κ1
2n+3 such that there exists a D ⊆ R such that

1. ∃y ∈ R([fy]W j
2n+3

= α)

2. ∀y ∈ R([fy]W j
2n+3

= α −→ D is invariantly ∆1
2n+3(y))

3. x ∈ D

4. D ⊆ {z ∈ R : ρ(z) = ρ(x)}.

So basically D is ∆1
2n+3 in the equivalence classes functions f : (δ˜1

2n+1)<ω → δ˜1
2n+1
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2.4 The Main Theorem on the uniqueness of L[T2n]

We assume AD again throughout this section. We start with the following basic lemma from
Q-theory:

Lemma 2.11 ([10]) Assume AD. Then there exists a non trivial Π1
2n+3 singleton, i.e. a

y2n+3 ∈ R such that {y2n+3} ∈ Π1
2n+3 and y2n+3 /∈ ∆1

2n+3.

Next, we aim to see that any Π1
2n+3 subset of κ1

2n+3 is uniformly ∆1
2n+3(y2n+3).

Lemma 2.12 Assume AD. Let A ⊆ R2 be a universal Π1
2n+3 set (recall that Π1

2n+3 is ω-
parametrized). Suppose that {y2n+3} = At, for some t ∈ ω, and y2n+3 /∈ ∆1

2n+3. Suppose ψ is a
Π1

2n+3 norm on the set A.
Then ∀α < κ1

2n+3,∀k, l ∈ ω, we have

∀w ∈ R([fw]W l
2n+1

= α→ A(k, w))↔ ∃z ∈ R,∃j ∈ ω[[fz]W j
2n+1

= α∧ψ((d(k, j, l), z)) < ψ(t, y2n+3),

where d : (ω)3 → ω is a recursive function such that for all z ∈ R and for all k, j, l ∈ ω,

A(d(k, j, l)), z))↔ ∀w ∈ R([fw]W l
2n+1

= [fz]W j
2n+1
→ A(k, w))

Proof.
Notice that our hypothesis on d immediately gives that

∃z ∈ R,∃j ∈ ω[[fz]W j
2n+1

= α∧ψ((d(k, j, l), z)) < ψ(t, y2n+3) −→ ∀w ∈ R([fw]W l
2n+1

= α −→ A(k, w))

Suppose the conclusion of the lemma fails. Then there must be l ∈ ω and α < κ1
2n+3 such that

for all z ∈ R, ∀j ∈ ω, whenever we have that [fz]W j
2n+1

= α then

A(d(k, j, l), z)) ∧ ψ(t, y2n+3) ≤ ψ((d(k, j, l), z))

But now this implies that
{y2n+3} ∈ ∆1

2n+3(z),

by assumption. This then gives that

y2n+3 ∈ ∆1
2n+3(z)

and
∀z ∈ R, ∀j ∈ ω([fz]W j

2n+1
= α −→ ∃y ∈ ∆1

2n+3(z)(A(t, y)))

By notice that by restricted quantification, we have that

B(z)←→ ∃y ∈ ∆1
2n+3(z)(A(t, y))
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is also Π1
2n+3 and by Kechris-Martin we have

∃x ∈ ∆1
2n+3 such that ∃y ∈ ∆1

2n+3(x)(A(t, y))

and hence
∃y ∈ ∆1

2n+3(A(t, y))

Contradiction!
�

Lemma 2.13 Assume AD. Let A be a universal Π1
2n+3 set of reals and let d be as above.

Let M ≺Σ1
2n+3

V be a transitive inner model of ZF+DC such that ORD ⊆ M . Then ∃y ∈
M ∩ R,∃t ∈ ω such that A(t, y) and for all α < κ1

2n+3, for all k, l ∈ ω, we have that

∀w ∈ R([fw]W l
2n+1

= α→ A(k, w))↔ ∃z ∈ R,∃j ∈ ω[fz]W j
2n+1

= α∧ψ((d(k, j, l), z)) < ψ(t, y2n+3)

Proof. By assumption, M satisfies Π1
2n+2-determinacy. So

M � ∀w ∈ R([fw]W l
2n+1

= α→ A(k, w))↔ ∃z ∈ R, ∃j ∈ ω[fz]W j
2n+1

= α∧ψ((d(k, j, l), z)) < ψ(t, y2n+3)

Also by assumption and since M � “A(k, w) holds” then we have that A(k, w) really holds.
So have that

∃z ∈ R,∃j ∈ ω[fz]W j
2n+1

= α ∧ ψ((d(k, j, l), z)) < ψ(t, y2n+3)

implies that
∀w ∈ R([fw]W l

2n+1
= α→ A(k, w))

Now suppose that there is an l ∈ ω,∃α < κ1
2n+3 such that ∀z ∈ R∀j ∈ ω whenever [fz]W j

2n+1
= α

then we have that ψ(t, y2n+3) ≤ ψ((d(k, j, l), z)). Since this is a Π1
2n+3(y2n+3) statement about

α, by Kechris-Martin ∃x ∈ ∆1
2n+3(y2n+3) and t ∈ ω such that [fx]W t

2n+1
= α. But then x is

definable in M thus x ∈M . Since M � ψ(d(k, t, j), x) < ψ(k, w) by assumption. But we have
M ≺Σ1

2n+3
V . Contradiction!

�

Finally in the next last two lemmas we use the fact that every Π1
2n+3 subset of κ1

2n+3 is
uniformly ∆1

2n+3(y2n+3) to compute any ∆1
2n+3 scale ~% in a nice scale ~ϕ.

Lemma 2.14 Assume AD. Let P and Q be two universal Π1
2n+2(y2n+3) sets of reals. Let ~ϕ be

a ∆1
2n+3(y2n+3) scale on P and ~ρ a ∆1

2n+3(y2n+3) scale on Q. Consider the trees from the scales
T2n+2(P, ~ϕ) and T2n+2(Q, ~ρ). Suppose that for every B ∈ Σ1

2n+3(y2n+3), the following set

{x ∈ R : ∀x1, ..., xn ∈ P0,∃y1, ..., yn(ψ0,~ϕ(k, yi) = ψ0,~ϕ(k, xi),∀k ≤ n, (〈y1, ..., yn〉, x) ∈ B)}

is also Σ1
2n+3(y2n+3). Then T2n+2(Q, ~ρ) ∈ L[T (~ϕ), y2n+3].
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Proof.
Since we’re assuming AD, all relevant pointclass are ω-parametrized, in particular, the

pointclass of sets which are relatively Σ1
2n+3 invariantly in the codes is ω-parametrized uniformly

in the codes given by ψ0,~ϕ. So we can find a set U ⊆ ω×R×R which is Π1
2n+3(y2n+3) and such

that

1. ∀x1, ..., xn,∀w1, ..., wn ∈ P, ∀k ∈ ω,∀l∀i ≤ n
(ψ0,~ϕ(l, xi) = ψ0,~ϕ(l, wi) −→ {x ∈ R : (x, 〈xi〉, k) ∈ U} = {x ∈ R : (x, 〈wi〉, k) ∈ U}

2. ∀x1, ..., xn ∈ P whenever ψ0,~ϕ(l, xi) = κl,i and W is relatively Π1
2n+3 invariant in the codes

κ0,0, ..., κl,i, then ∃k ∈ ω such that W = {x ∈ R : (x, 〈xi〉, k) ∈ U}

Let ~κ denote the sequence of ordinals κ0,0, ..., κl,i. Now let U~κ,k denote projection of U onto
the first coordinate, i.e. the set

{x ∈ R : (x, 〈xi〉, k) ∈ U}.

Next consider the set

Un = {(~κ, k) : U~κ,k is rel. ∆1
2n+3 inv. , U~κ,k 6= ∅,∀x, y ∈ U~κ,k(ψ0,~ρ(l, x0) = ψ0,~ρ(l, y0),∀l ≤ n)}

This is basically the set of codes of sections of relatively ∆1
2n+3 in the codes sets of reals but

we just require that they’re invariant in the norm being analyzed by the Kechris-Martin norm.
Also we have that Un+1 ⊆ Un. For any (~κ, k) and (~γ, j), we define (~κ, k) ≤n (~γ, j) if and only if
for every x ∈ U~κ,k and for every y ∈ U~γ,j,

ψ0,~ρ(n, x) ≤ ψ0,~ρ(n, y).

But by Becker and Kechris, we have that (Un,≤n) is in L[T (~ϕ), y2n+3] since the prewellordering
≤n is Σ1

2n+3(y2n+3) in the codes and since that sets Un are also Σ1
2n+3(y2n+3) in the codes. By

theorem 17, we can also find a code (~κ, k) ∈ Un for every n ∈ ω, for every x ∈ Q, x ∈ U~κ,k,
since these are exactly the codes of relatively ∆1

2n+3 in the codes sets of reals. Next for each
n ∈ ω, let %n : Un → ζn be the norm associated to the prewellordering ≤n defined above:

for any codes (~κ, k) and (~γ, j) in Un, %n((~κ, k)) < %n((~γ, j)) iff (~κ, k) <k (~γ, j)

Notice that for every n ∈ ω, ζn < κ1
2n+3. By Becker and Kechris, the sequence of norms ~% is in

L[T (~ϕ), y2n+3]. Since T (~ρ) is the set

{~α ∈ ORD<ω : ∃n ∈ ω, lh(~α) = n,∃(~κ, k) ∈ Un such that ∀l ≤ n, %n((~κ, k)) = u(n)}

then T (~ρ) ∈ L[T (~ϕ), y2n+3] and we are done.
�

We finally conclude with the last lemma which finishes the proof that the models L[T2n+2]
are unique.
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Lemma 2.15 Assume AD. Let P and Q be two universal Π1
2n+2 set of reals. Let ~ϕ be a ∆1

2n+3

scale on P and ~ρ be a ∆1
2n+3 scale on Q. Consider the trees from the scales T (~ϕ) = T2n+2(P, ~ϕ)

and T (~ρ) = T2n+2(Q, ~ρ) as usual. Then L[T (~ϕ)] = L[T (~ρ)]

Proof.
By the previous lemma, we just have to show that T (~ρ) ∈ L[T (~ϕ)]. By lemma 2.21, we only

need to see that if y ∈ R is such that for L[T (~ϕ)] ≺Σ1
2n+3

V , y ∈ L[T (~ϕ)] ∩ R and satisfies the

conclusion of lemma 2.20, then for all sets B which are Σ1
2n+3(y), then

{x ∈ R : ∀x1, ..., xn(xi ∈ P → ∃y1, ..., yn(ψ0,~ϕ(k, yi) = ψ0,~ϕ(k, xi),∀i ≤ n,∀k, (〈y1, ..., yn〉, x) ∈ B)}

is also Σ1
2n+3(y). By the proof we give in the next section of the fact that L[T2n+2] = L[M#

2n+1,∞],
y can be considered to be y0

2n+3, the least non-trivial Π1
2n+3 singleton.

Next we define a Π1
2n+3 norm Φ for which the above lemma applies, by setting Φ(x) = Φ(y)

if and only if either

1. x = 〈xi〉, y = 〈yi〉,∀i ≤ n, for some n ∈ ω, and ∀i ≤ n, xi ∈ P ∧ yi ∈ P ∧ ψ0,~ϕ(k, xi) =
ψ0,~ϕ(k, yi), or

2. x 6= 〈xi〉 and either for every i ≤ n, xi /∈ P or there exists an i ∈ ω such that xi /∈ P and
y 6= 〈yi〉 and either i ≤ n, yi /∈ P or there exists an i ∈ ω such that yi /∈ P

Next we fix a set U ⊆ R× R× ω such that

1. For all j, l ∈ ω for all w, z ∈ R and for all t ∈ ω

[fx]W l
2n+1

= [fy]W j
2n+1
→ {z : A(z, l_x, t)} = {z : A(z, j_y, t)},

2. U ∈ Π1
2n+3,

3. For every α < κ1
2n+3, whenever W = {z : ∀x([fx]W l

2n+1
= α→ V (z, x)} where V ∈ Π1

2n+3,

then there is t ∈ ω, y ∈ R and j ∈ ω such that W = {z : U(z, j_y, t)}.

For t ∈ ω, α < κ1
2n+3 and [fx]W l

2n+1
= α we consider as in lemma 2.20, the projection of U

onto the first coordinate:
Uα,t = {z ∈ R : U(z, l_x, t)}.

By lemma 2.20, the assumption on y0
2n+3 implies that for B ∈ Π1

2n+3, we have that

{(x, l) : ∀(y, j) ∈ R× ω([fx]W l
2n+1

= [fy]W j
2n+1
→ B(y, j))}

is Σ1
2n+3(y0

2n+3). We now fix a set B ∈ Σ1
2n+3(y0

2n+3).
Let X be the set of all z ∈ R such that for all α < κ1

2n+3 and for all t1:

1. Either for all t2 ∈ ω, Uα,t1 6=Φ Uα,t2 , or
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2. there are x, y ∈ Uα,t2 which are not Φ-equivalent, or

3. Uα,t2 = ∅, or

4. There exists an x ∈ Uα,t2 such that x = 〈xi〉,∀i < ω, xi ∈ P ∧ ∃y = 〈yi〉 such that
Φ(x) = Φ(y) and B(y, z), or

5. There is an x ∈ Uα,t2 such that either x 6= 〈xi〉 for all xi or x = 〈xi〉 and for some i ∈ ω,
xi /∈ P .

Claim 4 X is Σ1
2n+3(y0

2n+3)

Proof.
We check that the clauses (1) through (5) are at most Σ1

2n+3(y0
2n+3). Clause (1) is Σ1

2n+3(y0
2n+3)

since the pointclass Π1
2n+3 has the prewellordering property. Taking the existential quantifier in

clause (2) outside the conjunction of clauses (1) and (2), shows that (1)∨(2) is also Σ1
2n+3(y0

2n+3).
The same holds for (1)∨ (3), (1)∨ (4) and (1)∨ (5). By the generalization of the Kechris-Martin
theorem, X is now Σ1

2n+3(y0
2n+3).

�

This last claim now finishes the proof of the lemma:

Claim 5 We have that

X = {z ∈ R : ∀x1, ..., xn ∈ P0,∃y1, ..., yn(ψ0,~ϕ(k, yi) = ψ0,~ϕ(k, xi),∀k∀i ≤ n, (〈y1, ..., yn〉, x) ∈ B}

Proof. Let x1, ..., xn ∈ P0 and let ψ0,~ϕ(k, xi) = αk,i for all k ∈ ω and i ≤ n then by corollary
4.24, there exists α < κ1

2n+1 and t2 ∈ ω such that

1. Uα,t2 is ∆1
2n+3 in any code w which codes a function f : (δ˜1

2n+1)<ω → δ˜1
2n+1 via the

“nesting” of the Martin tree and which equivalence class gives α and

2. x = 〈xi〉 ∈ Uα,t2 and

3. For every y ∈ Uα,t2 , we have y = 〈yi〉 with ψ0,~ϕ(k, yi) = αk,i, and so we have Φ(y) = Φ(x).

Hence if the defining condition of the set

{z ∈ R : ∀x1, ..., xn ∈ P0,∃y1, ..., yn(ψ0,~ϕ(k, yi) = ψ0,~ϕ(k, xi)),∀k ≤ n, (〈y1, ..., yn〉, x) ∈ B}

fails, then Uα,t2 witnesses that z ∈ R /∈ X. Conversely, if z /∈ X then clause (4) above must fail
and thus

z /∈ {z ∈ R : ∀x1, ..., xn ∈ P0,∃y1, ..., yn(ψ0,~ϕ(k, yi) = ψ0,~ϕ(k, xi),∀k ≤ n, (〈y1, ..., yn〉, x) ∈ B}.

�

�

This completes the proof of the main theorem.

19



3 L[T2n] and direct limits associated to mice

3.1 Introduction

In this section the goal is to show that L[T2n+2] = L[M#
2n+1,∞]. We’ll use ideas of Sargsyan and

Steel to show the main theorem below.
The following theorem is a central theorem in descriptive inner model theory. It jump-

started the analysis of HOD’s of models of determinacy.

Theorem 18 (Steel [16])) ADL(R implies that HODL(R) is a core model below Θ. In L(R)
every regular cardinal below Θ is measurable.

We will show the following theorem below:

Theorem 19 (Main Theorem) Assume ADL(R). Then the L[T2n+2] are the models L[M#
2n+1,∞].

We need to record all the notions involved in the computation. Given a set of reals A, aA
is defined as follows:

x ∈ aA↔ ∃n0∀n1∃n2∀n3...(x, {(i, ni) : i ∈ ω}) ∈ A

Notice that this is the same as saying :

aA = {x : I has a winning strategy in GAx}

LetM be a premouse. For α < o(M), we letM||α beM cutoff at α and the last predicate
indexed at α is kept. M|α is M||α without its last predicate. We say that α is a cutpoint
if there are no extenders on the extender sequence of M such that α ∈ (cp(E), lh(E)]. We
say α is a strong cutpoint is there are no extender on the extender sequence of M such that
α ∈ [cp(E), lh(E)]. We refer the reader to [17] for the definitions of the iteration game and
normal trees.

Definition 3.1 Let T be an n-normal iteration tree of limit length on an n-sound premouse
M and let b be a cofinal branch of T . Then Q(b, T ) is the shortest initial segment Q of MT

b ,
if one exists, such that Q projects strictly across δ(T ) or defines a function witnessing δ(T ) if
not Woodin via extenders on the sequence of M(T ).

We refer the reader to [17] for the definition of the Dodd-Jensen property. The property
says that iteration maps are minimal. The main use of the Dodd-Jensen property is in showing
that HOD limits exist.

Definition 3.2 (CΓ) For a a countable transitive set we let

CΓ(a) = {b ⊆ a : b ∈ OD(a)} = P(a) ∩ LpΓ(a)

where LpΓ(a) is the union of all a premice projecting to a having an ω1 iteration strategy in Γ.
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let Γn be such that CΓn(x) = RMn(x). So we’ll let Γω be (Σ2
1)L(R).

Definition 3.3 Let Γn be as above. N is called Γn-suitable if there is a δ such that
N = LpΓn(N | δ) and

1. N � δ is Woodin

2. For every η < δ,

(a) If η is a cutpoint of N then LpΓn(N | η) �N
(b) LpΓn(N | η) � η is not Woodin, and

(c) If η is a strong cutpoint of N , then LpΓn(N | η) = N | (η+)N

We write δN for the unique such δ.

A theorem of Steel and Woodin states that a real x is ordinal definable from y over L(R)
if and only if x is in Mω(y), where Mω(y) is the minimal class premouse over y with ω
many Woodin cardinals, see chapter 7 of [17] for a proof of this theorem. This phenomenon
is called mouse capturing. By mouse capturing in L(R), (Σ2

1)L(R)-suitability is the same as
L(R)-suitability, in which case we just say “suitable”. Given an iteration tree T on a suitable
mouse N , T is correctly guided if for every limit α < lh(T ), if b if the branch of T � α chosen
by T and Q(b, T � α) exists then

Q(b, T � α) � Lp(N (T � α).

T is said to be short if either T has a last model or there is a wellfounded branch b such that
T _{N Tb } is correctly guided. T is maximal if T is not short. Notice that maximal trees can’t
be normally continued since every initial segment of a normal tree is short.

Definition 3.4 Let N be suitable. then N is short tree iterable iff whenever T is a short tree
on N then:

1. If T has a last model then it can be freely extended by one more ultrapower, that is every
putative normal tree U extending T and having length lh(T ) + 1 has a wellfounded last
model, and

2. If T has limit length and T is short , then T has a cofinal wellfounded branch.

As usual for a suitable mouse N we let

γNs = sup(HullN (s−) ∩ δN ),

ThNs = {(ϕ, t) : t ∈ (δN ∪ s−)<ω ∧ L[N|max(s)] � ϕ(t)},
and

HNs = HullN (γNs ∪ δN )
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We say N is n-iterable if whenever T is a normal tree on N there is a correct branch b of
T such that ib(sn) = sn, where sn is the sequence of the first n uniform indiscernibles, then
ib � HNsn is independent of the branch b. We let inN ,Q be the iteration embedding which fixes the
sn and call it the n-iterability embedding.

We will need the notion of Π1
n iterability for mice with n Woodin cardinals. This notion is

a strengthening of the notion of Π1
2 iterability and the basic can be found in [14]. Π1

n iterability
will be sufficient for comparison of mice with the appropriate number of Woodin cardinals which
can be embedded in the background. However the definition of Π1

n iterability is asymetrical
in the case where n is even or odd, reflecting the periodicity phenomenon from descriptive set
theory. The definition is slightly more complicated in the case n is odd, and this is the case we
are directly concerned with here (Notice that this is the same as Πn-iterability, where n is even,
following Steel’s notation, since ΠHC

n = Π1
n+1). We refer the reader to [14] for full definitions of

Π1
n iterability.

Using the Spector-Gandy theorem, it is then immediate that the set

{M :M is Π1
2n+2 iterable}

is a Π1
2n+2 set. Steel then shows in [14] that Π1

2n+2 iterability is sufficient for comparison of
Π1

2n+2-iterable mice with mice which 2n+ 1 Woodin cardinals and which are realizable into the
background. The reader can consult [14] for a full proof of this fact.

3.2 Inner model characterization of L[T2n]

We now state and prove the main theorem of this section.

Theorem 20 Assume ADL(R). Let T2n+2 be the canonical tree which projects to a universal
Π1

2n+2 set. Then

L[T2n+2] = L[M#
2n+1,∞]

Proof.
Define Steel’s tree S2n+2 for Π1

2n+2. This will be a tree on ω × ω × ω × κ1
2n+3. Let L be the

language of premice and let L∗ = L∪ {ȧi : i < ω} where the ai are constants. Let 〈ϕn : n < ω〉
be a recursive enumeration of the sentence of L∗.

Recall that a theory T is said to be Henkinized if for every formula ϕ and variable x, there
is a constant a such that “∃xϕ(x) → ϕ(x/a)” ∈ T , where ϕ(x/a) results from replacing free
occurrences of the variable x by the constant a. We say x ∈ R codes a premouse if

Tx = {φn : x(n) = 0}

is a complete consistent Henkinized theory of a premouse. If x codes a premouse, we let

Rx = {ȧxi : i < ω}

be the premouse whose theory is Tx. Define G− to be the set of triples such that:
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1. y codes a C2n+2 guided tree Ty on M#
2n+1

2. z codes a premouse Rz such that M(Ty) �Rz � L[M(Ty)] and Rz � ZFC− + ”δ(Ty) is
the largest cardinal”

3. w codes a branch b of Ty such that Rz �Mb

The set G− is a ∆1
2n+2 set. We let

G = {(y, z, w) ∈ G− : either Rz � δ(Ty) is not Woodin or M(Ty)+ �Rz},

where M(Ty)+ = C2n+2(M(Ty)) is the unique suitable premouse extending M(Ty) such that
δ(Ty) is its largest Woodin cardinal. So in G we basically have two cases: the case where Ty is
a short tree and the case where Ty is a maximal tree. Then the set G is a Π1

2n+2(x) set of reals

where x codes M#
2n+1.

Define a scale on G as follows. Fix a Σ1
2n+2 scale ~ϕ on G−. Extend L∗ to L∗∗ by introducing

new constant symbols {δ̇} ∪ {τ̇i : i < ω}. The intended meaning of the symbols is that if z
codes a premouse Rz which is suitable then we interpret δ̇z as the Woodin cardinal of Rz and
τ̇ zi as the theories TRzi , where i means we only look at the first i indiscernibles. Let R+ be the
L∗∗ structure obtained from Rz. Let 〈θi : i < ω〉 be a recursive enumeration of the Σ0 sentences
of L∗∗. Then let

T+
z = {θi : R+

z � θi}

Now let
φ0
i (y, z, w) = 0 if θi ∈ T+

z and φ0
i (y, z, w) = 1 otherwise.

If θn = ∃v < δ̇ψ(v) and θn ∈ T+
z , then we let

φ1
n(y, z, w) = least k such that ψ(ȧk) ∈ T+

z

and otherwise we let φ1
n(y, z, w) = 0. Also if (ȧk < γRzk ) ∈ T+

z then let

φ2
n,k(y, z, w) = iRz ,∞(ȧzn)

so basically we code the embedding into the norms. Notice, just as in [15], that the first-
order theory of R+ is coded into the norms. The norms also code the elementary embedding
πR,∞ � δ(Tz). Now we code the whole thing as follows: let

φn,m(y, z, w) = 〈ψn(y, z, w), φ0
n(y, z, w), φ1

n(y, z, w), φ2
n,m(y, z, w)〉

Using arguments from Steel one can show that this is a scale 7, see [15]. We actually go ahead
and show the following claim:

Claim 6 ~φn,m is a scale on G.

7The key is to show that we have fullness and to use the Dodd-Jensen property.
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Proof.
The lower semi-continuity property follows from the Dodd-Jensen property. We refer to

Steel [15] for the details. Next we verify the convergence property. So let (yn, zn, wn) →
(y, z, w) with respect to ~φn,m. We then must see that (y, z, w) ∈ G. Since ψn is a scale, then
(y, z, w) ∈ G−. This then implies that Tz is C2n+2-guided and that we have Rz �M(Tz)+.

Since (yn, zn, wn)→ (y, z, w) with respect to ~ψ0 then we can define T+
zn → T+, and T+ is exists

and codes the first-order theory of some unique P+. Since (yn, zn, wn) converges to (y, z, w)

with respect to ~φ1, then Rz = P . Next we justify that P is wellfounded and suitable. For this
we use the fact that ~φ2 is a scale. Let

γn = sup({ξ < δ̇P
+

: (ξ is definable over P from τ̇P
+

n })

and let
γ = sup

n<∞
γn.

Since γ ≤ δ̇P
+

= δ(Ty) then γ is in the wellfounded part of P+. Let P1 = HP1 (γ ∪ {τ̇P+

n })
be a Σ1 Skolem hull which is collapsed on its wellfounded part. Let σ : P1 → P be the
canonical embedding Then we must have crit(σ) = γ by elementarity, so that σ � γ = id. Let
πn : Pzn → M2n+1,∞ and define π : P|γ → M2n+1,∞ by π(ȧzj) = eventual value of πn( ˙aznj )

as n → ∞. Notice that this eventual value must exist since if ȧzj < γ, then there is ϕ ∈ T+
z

such that (ȧzj < γ) ↔ ϕ and ϕ ∈ T+
zn for all sufficiently large n. So there exists a k < ∞ such

that ˙aznj < γ
Pzn
k . We now extend π : P|γ →M2n+1,∞ to π : P1 →M2n+1,∞. Notice that this

extension need not be an iteration embedding. We also let π( ˙τP+

n ) = ˙τ∞n .
Let c ∈ P1. Then there exists a k <∞ and a Σ0 formula ϕ of the language of premice, and

parameters ȧzi0 , ...,
˙azin < γk such that

c = the unique v s.t P|γ � ϕ[v, ȧzi0 , ...,
˙azin ,

˙τP+

n ]

We can do this since ~φ0 is a scale and since the T+
zn converge to T+

z . Then we set

π(c) = the unique v s.t M2n+1,∞|γ∞n � ϕ[v, π(ȧzi0), ..., π( ˙azin), ˙τ∞n ]

As usual the map π : P1 → M2n+1,∞ is Σ1 elementary and welldefined. Now, since by a
result of Woodin there exists suitable mice and by [15] we can apply the condensation lemma,
then γ = δ(Ty) as Ty is C2n+2 guided. So P1 = P and σ = id. The other alternative is that
P � δ(Ty) is not Woodin because the truth of this statement is kept by all theories T+

zn then we
have that either Rz =M(Ty) or Rz � δ(Ty) is not Woodin so that G(y, z, w) holds.

�

As in [15], one can show that the norms of the above scale are all in M#
2n+1,∞. The norms

of the above scale φi,k can be computed to be in for every i in a2n+1ω(i + 1)-Π1
1 where we

use only the first i indiscernibles, since the theories in i indiscernibles have same complexity
a2n+1ω(i + 1)-Π1

1, i.e. the types of the first i indiscernibles are exactly a2n+1ω(i + 1)-Π1
1. We

state the next lemma without proof, a similar computation can be found in [15]:
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Lemma 3.5 For every i, k < ω, the norms φi,k of the scale ~φn,m are a2n+1ω(i+ 1)-Π1
1.

Thus each φn is ∆1
2n+1(x). Let S2n+2 be the tree from this scale. By the proof of the

uniqueness of the L[T2n+2] models we have that L[T2n+2] = L[S2n+2]. We’ll be done if can show
that L[M#

2n+1,∞] = L[S2n+2].

First becauseM2n+1,∞ is Σ1
2n+3(M#

2n+1), then we have thatM2n+1,∞ ∈ L[S2n+2] = L[T2n+2],

since by Q-theory, M#
2n+1 ∈ L[T2n+2]. Letting i = iM2n+1,∞ � δM2n+1 then i ∈ L[S2n+2] because

the iteration embedding i is also Σ1
2n+3(M#

2n+1). Thus we have M2n+1,∞, i ∈ L[S2n+2]. Hence

M#
2n+1,∞ ∈ L[S2n+2].

We next show that we have that L[S2n+2] ⊆ L[M#
2n+1,∞]. Following an idea of Steel (as in

[18] or [16] for instance), we build the direct limit tree S. It will be the case that S ∈ L[M#
2n+1,∞]

and that Steel’s tree S2n+2 (and also T2n+2, whichever way we decide to define it) belongs to L[S]
by the uniqueness of the L[T2n+2] models. We then define S to be the tree on ω×ω×ω×M2n+1,∞
of all attempts to build (x, π) ∈ (R3 ×Mω

2n+1,∞) such that

1. x codes the complete theory with parameters of a structure Px for the language of premice
with universe ω \ {0},

2. π(0) is a successor cardinal Woodin cutpoint of Px, and,

3. π � (ω \ {0}) is an elementary embedding from Px into M2n+1,∞|π(0).

Notice that S2n+2 ⊆ S. It then follows that S2n+2 ∈ L[S] and since S ∈ L[M#
2n+1,∞], we are

done.
�

We record the following which now follows from the generalization of the Kechris-Martin
theorem, the uniqueness of the L[T2n] models and the above characterization of the L[T2n] in
terms of HOD limits of directed systems of mice.

Theorem 21 (Inner model characterization of Π1
2n+3) Assume ADL(R), let δM2n+1,∞ be the

least Woodin cardinal of M2n+1,∞ and let κ be the least admissible above δM2n+1,∞. Then a set
A ⊆ R is Π1

2n+3 if and only if

A(x)↔ Lκ[M#
2n+1,∞, x] � ϕ(x),

where ϕ ∈ Σ1.

4 L[T2n], CH and GCH: a proof of a conjecture of Woodin

In this section we give a positive solution to the following problem posed by Woodin:

Conjecture 1 (Woodin) L[T2n+2] satisfies the GCH for every n ∈ ω.
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In previous work, see [17] and [18], Steel has shown that assuming AD and Γ-mouse capturing
holds, L[TΓ] is an extender model and satisfies the GCH, where Γ is a scaled inductive like
pointclass. However recall that in our case Γ is now a non scaled pointclass (i.e. Π1

2n in the
case of the projective hierarchy). We would like to thank Sargsyan and especially Woodin, for
introducing us to the above conjecture and for discussions on the problem.

We first recall some background of Q-theory. Recall that Q2n+3 is a subset of C2n+3, where
C2n+3 is the largest thin Π1

2n+3 set of reals. Also there is a ∆1
2n+3-good wellorder on C2n+3 of

length ℵ1.
To give some context and for the sake of completeness, we cite the following two theorems

of [10].

Theorem 22 (Martin, [10]) There is a real w such that if w ∈ L[T2n+1, x] then

R ∩ HODL[T2n+1,x] = Q2n+3

The next theorem, due to Woodin, shows that relativizing to a real is the same as adjoining
a real to HOD.

Theorem 23 (Woodin, [10]) For every real w there is a real z such that if w, z ∈ L[T2n+1, x]

then R ∩ HOD
L[T2n+1,x]
T2n+1

[w] = R ∩ HOD
L[x]
T2n+1,w

= Q2n+3

What will help in correctly identifying L[T2n+2] from the point of view of inner model theory
is a characterization of the reals of L[T2n+2]. We show the following theorem:

Theorem 24 (The reals of L[T2n+2])
Let Q2n+3 be the largest bounded Π1

2n+3 set of reals and let y2n+3 be the least nontrivial Π1
2n+3

singleton and let y2n+3(x) be the least nontrivial Π1
2n+3(x) singleton. Let Y2n+3 = Q2n+3 ∪

{y2n+3}∪ {y2n+3(x) : x ∈ Q2n+3}. Therefore L[T2n+2] is y2n+1-closed and R∩L[T2n+2] = Y2n+3.

Proof.
L[T2n+2] can compute left most branch of a ∆1

2n+3 scale on a ∆1
2n+3 set of reals and it

is a result of Harrington that the real from the left most branch of the tree from this scale,
provided the set A ∈ ∆1

2n+3 on which we put the scale, does not contain any ∆1
2n+3 real, is

∆1
2n+3(M#

2n+1) and vice-versa. So the least non trivial Π1
2n+3 singleton is in L[T2n+2]. Next,

using the generalizations of the Kechris-Martin theorem to all pointclasses Π1
2n+3, one can show

8 that Q2n+3 ⊆ L[T2n+2], so L[T2n+2] can also compute the left most real of the tree of a
∆1

2n+3(x) scale on a ∆1
2n+3(x) set of reals, for every x ∈ Q2n+3. So y2n+3(x) ∈ L[T2n+2] for every

x ∈ Q2n+3.
�

The above theorems of Martin and Woodin suggest strongly that

HOD
L[T2n+1,x]
T2n+1

∩ Vκ12n+3
=M2n+1,∞

8This is shown in the author’s PhD thesis, see [1], section 3.4 for a generalization of the Kechris-Martin
theorem and section 3.5 for a proof that Q2n+3 ⊆ L[T2n+2].

26



and that
HOD

L[T2n+1,x]
T2n+1

= L[M2n+1,∞,Σ0],

where Σ0 is a certain fragment of the full iteration strategy Σ on M2n+1, see [18].
As mentioned above, recall that for α = δ˜1

2n+1 then we have that L[T2n+1] ∩ Vδ˜1
2n+1

is an

iterate of a M2n cut a the least strong cardinal to its least Woodin cardinal and the height of
that iterate is exactly δ˜1

2n+1, since δ˜1
2n+1 is the least strong to the bottom Woodin δ∞ in the

direct limit of all iterates of M2n. We recall how this computation takes place. The set up
below is from [18].

Definition 4.1 A premouse P is Γ-properly small iff P is countable, has a largest cardinal
which is a cutpoint of P and for every η < o(P),

1. LpΓ(P|η) � P,

2. LpΓ(P|η) � η is not a Woodin cardinal,

3. If η is a strong cutpoint of P, then LpΓ(P|η) = P|(η+)P .

If Σ is the (ω, ω1, ω1) strategy of P given by the above then we say that it is LpΓ guided
and the non-dropping iterates of P via Σ are Γ properly small. Σ is unique and has by the
Dodd-Jensen property. This allows defining the direct limit of all non-dropping LpΓ guided
iterates of P . So let I = {P : P is Γ-properly small and Γ-correctly iterable}. For P ,Q ∈ I,
we let

P ≺ Q ↔ ∃η s.t η is a strong cutpoint of Q,Q|η is a Γ-correct iterate of P

It is then shown in [18] using a comparison argument that the system (I,�) is a directed
system of mice, and thus by the Dodd-Jensen property, the direct limit of this system, M∞ is
well-defined, wellfounded and that M∞ = L[TΓ].

We now turn to the proof of the GCH in the models L[T2n]. We are grateful to Hugh Woodin
for guiding us to show the main theorem of this section. Following an idea of Hugh Woodin, we
first show that the GCH holds in L[T2n+2] ∩ Vκ12n+3

. Then the GCH will hold in L[T2n+2] using

a usual Gödel condensation argument for relative constructibility, see for example [5] chapter
19. The goal is then to show that L[T2n+2] ∩ Vκ12n+3

is a direct limit of fully sound structures.

As in the theorem in the previous section, we will then show that L[T2n+2] = L[M#] for some
M which is a direct limit of fully sound structures and such that L[M#]∩ Vκ12n+3

=M. So we

will require that o(M) = κ1
2n+3. We start with the following definition:

Definition 4.2 (M#
2n+1-closed mouse) Let M be a premouse. Then we say that M is a

M#
2n+1-closed premouse if for every A ∈ M, we have M#

2n+1(A) ∈ M. Also, M is a M#
2n+1-

closed mouse if it is a M is a M#
2n+1-closed premouse and has an (ω, ω1, ω1)-iteration strategy

Σ.
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Next we need to define the Woodin mice which will constitute our directed system below.

Definition 4.3 We say N is a n-Woodin mouse if the following conditions are satisfied:

1. N = L(N )# ∩ Vδ, where δ = o(N ),

2. L(N ) � δ is a Woodin cardinal .

3. N has n Woodin cardinals.

We next define the iteration strategy of an n-Woodin mouse in the case n is odd.

Definition 4.4 (Iterability for n-Woodin mice) Let N be an n-Woodin mouse. We say N
is correctly iterable if whenever ~T is a countable stack of C2n+2 guided normal trees of successor
lengths on N with last model Q, then

1. Q is wellfounded and if the branch from N to Q of ~T does not drop, then Q is an
n-Woodin mouse and

2. If U is a C2n+2 guided normal tree on Q then

(a) U is a short tree and

(b) If U has a last model then it can be freely extended by one more ultrapower that is
every putative normal iteration tree T extending U and having length lh(U) + 1 has
a wellfounded last model and moreover this last model is an n-Woodin mouse if the
leading branch does not drop, and

(c) If U has limit length then U has a cofinal wellfounded branch b such that Q(b, U) =
Q(U) and MU

b is an n-Woodin mouse if the branch from N to Q to MU
b does not

drop.

By Steel, see [14], the above notion of iterability for n-Woodin mice is equivalent to Π1
2n+2

iterability, defined above. Let N be the least 2n + 1-Woodin mouse, that is if S �N then S
fails one of the conditions above. Let ΣN be the iteration strategy of N . Define

I = {P : P is a Σ-iterate of N}

and for P ,Q ∈ I, we let

P ≺∗ Q ↔ ∃η(η is a Woodin cardinal cutpoint of Q and Q|η is a countable Σ-iterate of P)

Then notice that (I,≺∗) is a partial order.

Lemma 4.5 (I,≺∗) is countably directed.
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The proof of the above is as usual and we chose to omit it. The proof is given in [17].
Let now N∞ be the direct limit of the system (I,≺∗). Then since (I,≺∗) is countably

directed, N∞ is wellfounded. N∞ is the direct limit of all countable iterates of the least N
satisfying the above two conditions, and we can define this direct limit by the Dodd-Jensen
property of the ΣN . Notice that N∞ is itself a countable iterate of N via ΣN . It then follows
by the proof in the above section that

L[T2n+2] = L[N#
∞],

since the iteration strategy Σ∞ of N∞ is Π1
2n+3. Notice that

N∞ = L[N#
∞] ∩ Vδ∞ = L[N#

∞] ∩ Vκ12n+3
= L[T2n+2] ∩ Vκ12n+3

.

Therefore L[T2n+2] ∩ Vκ12n+3
is a direct limit of all Σ iterates of N . Since N∞ is fully sound

then L[T2n+2] ∩ Vκ12n+3
� GCH. Then by a condensation argument as in the Gödel condensa-

tion lemma, L[T2n+2] � GCH. See [5] for the condensation lemma in the context of relative
constructibility.

We drop down to the case of M#
1 for the moment. It then remains to show that N∞ is

M#
1 -closed and we finish by showing the following lemma. So N∞ is the least active mouse

closed under M#
1 which projects to ω. It is sometimes referred to in the literature as M##

1 .

Lemma 4.6 N∞ is M#
1 -closed. Therefore N∞ does not project at or below δ∞, N∞ is fully

sound and
ρω(N∞) > o(N∞) = δ∞.

Proof.
Suppose not and let A ∈ N∞ such that M#

1 (A) /∈ N∞. Let P ∈ I be a countable iterate
of N such that πP,∞ : P → N∞ is the iteration embedding. Let π : L(P) → L(N∞) be
elementary such that π|P = πP,∞ and such that δ∞,N∞,P and A ∈ ran(π). Let Ā ∈ P such

that π(Ā) = A. Notice that M#
1 (Ā) has same size as Ā. It then follows it is a bounded subset

of δP . Since theM#
1 operator condenses well then we have thatM#

1 (π−1(A)) = π−1(M#
1 (A)).

So M#
1 (π−1(A)) /∈ P . But then L(P) 2 δP is Woodin . Contradiction.

�

The above can be generalized in the obvious way to allM#
2n+1. It then follows that L[T2n] �

GCH. From the above it should now be possible to adapt the standard proofs that �κ for
κ > ℵ1 a cardinal to show that if V = L[T2n] then for any cardinal κ > ℵ1, �κ holds. Using
purely inner model theoretic tools and Q-theory for inductive pointclasses, it should be possible
to push the analysis to pointclasses higher than those of the projective hierarchy. Or it may as
well be possible that the very fine analysis of L(R) of Jackson is necessary to carry this analysis
further.
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